Skip to contents

kindling (development version)

kindling 0.2.0

New features

  • Added regularization support for neural network models

    • L1 regularization (Lasso) for feature selection via mixture = 1
    • L2 regularization (Ridge) for weight decay via mixture = 0
    • Elastic Net combining L1 and L2 penalties via 0 < mixture < 1
    • Controlled via penalty (regularization strength) and mixture (L1/L2 balance) parameters
    • Follows tidymodels conventions for consistency with glmnet and other packages
  • n_hlayers() now fully supports tuning the number of hidden layers

  • hidden_neurons() gains support for discrete values via the disc_values argument

    • e.g. disc_values = c(32L, 64L, 128L, 256L)) is now allowed
    • This allows tuning over specific common hidden unit sizes instead of (or in addition to) a continuous range

Implementation fixes

  • Tuning methods and grid_depth() is now fixed

    • Parameter space for the number of hidden layers is now fixed and active
    • Corrected parameter space handling for n_hlayers (no more invalid sampling when x > 1)
    • Uses tidyr::expand_grid(), not purrr::cross*()
    • Fix randomization of parameter space which will produce NAs outside from kindling‘s own ’dials’
    • No more list columns when n_hlayers = 1
  • The supported models now use hardhat::mold(), instead of model.frame() and model.matrix().

Documentation

  • Add a vignette to showcase the comparison with other similar packages

  • The package description got few clarifications

  • Vignette to showcase the comparison with other similar packages

  • hidden_neurons parameter now supports discrete values specification

    • Users can specify exact neuron counts via values parameter (e.g., hidden_neurons(values = c(32, 64, 128)))
    • Maintains backward compatibility with range-based parameters (e.g., hidden_neurons(range = c(8L, 512L)) / hidden_neurons(c(8L, 512L)))
  • Added \value documentation to kindling-nn-wrappers for CRAN compliance

  • Documented argument handling and list-column unwrapping in tidymodels wrapper functions

  • Clarified the relationship between grid_depth() and wrapper functions

kindling 0.1.0

CRAN release: 2026-01-31

  • Initial CRAN release
  • Higher-level interface for torch package to define, train, and tune neural networks
  • Support for feedforward (multi-layer perceptron) and recurrent networks (RNN, LSTM, GRU)
  • Integration with tidymodels ecosystem (parsnip, workflows, recipes, tuning)
  • Variable importance plots and network visualization tools