kindling 0.2.0
New features
-
Added regularization support for neural network models
- L1 regularization (Lasso) for feature selection via
mixture = 1 - L2 regularization (Ridge) for weight decay via
mixture = 0 - Elastic Net combining L1 and L2 penalties via
0 < mixture < 1 - Controlled via
penalty(regularization strength) andmixture(L1/L2 balance) parameters - Follows tidymodels conventions for consistency with
glmnetand other packages
- L1 regularization (Lasso) for feature selection via
n_hlayers()now fully supports tuning the number of hidden layers-
hidden_neurons()gains support for discrete values via thedisc_valuesargument- e.g.
disc_values = c(32L, 64L, 128L, 256L)) is now allowed - This allows tuning over specific common hidden unit sizes instead of (or in addition to) a continuous range
- e.g.
Implementation fixes
-
Tuning methods and
grid_depth()is now fixed- Parameter space for the number of hidden layers is now fixed and active
- Corrected parameter space handling for
n_hlayers(no more invalid sampling whenx > 1) - Uses
tidyr::expand_grid(), notpurrr::cross*() - Fix randomization of parameter space which will produce NAs outside from kindling‘s own ’dials’
- No more list columns when
n_hlayers = 1
The supported models now use
hardhat::mold(), instead ofmodel.frame()andmodel.matrix().
Documentation
Add a vignette to showcase the comparison with other similar packages
The package description got few clarifications
Vignette to showcase the comparison with other similar packages
-
hidden_neuronsparameter now supports discrete values specification- Users can specify exact neuron counts via
valuesparameter (e.g.,hidden_neurons(values = c(32, 64, 128))) - Maintains backward compatibility with range-based parameters (e.g.,
hidden_neurons(range = c(8L, 512L))/hidden_neurons(c(8L, 512L)))
- Users can specify exact neuron counts via
Added
\valuedocumentation tokindling-nn-wrappersfor CRAN complianceDocumented argument handling and list-column unwrapping in tidymodels wrapper functions
Clarified the relationship between
grid_depth()and wrapper functions
kindling 0.1.0
CRAN release: 2026-01-31
- Initial CRAN release
- Higher-level interface for torch package to define, train, and tune neural networks
- Support for feedforward (multi-layer perceptron) and recurrent networks (RNN, LSTM, GRU)
- Integration with tidymodels ecosystem (parsnip, workflows, recipes, tuning)
- Variable importance plots and network visualization tools
